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Abstract. A multi cone domain Ω ⊆ R
n is an open, connected set

that resembles a finite collection of cones far away from the origin.
We study the rate of decay in time of the heat kernel p(t, x, y) of a
Brownian motion killed upon exiting Ω, using both probabilistic and
analytical techniques. We find that the decay is polynomial and we
characterize limt→∞ t1+αp(t, x, y) in terms of the Martin boundary
of Ω at infinity, where α > 0 depends on the geometry of Ω. We next
derive an analogous result for tκ/2Px(T > t), with κ = 1 + α− n/2,
where T is the exit time form Ω. Lastly, we deduce the renormalized
Yaglom limit for the process conditioned on survival.

1. Introduction. Let O be a domain (open and connected set) in R
n,

regular for the Dirichlet problem. Consider an n−dimensional Brownian
motion Bt starting from the interior of O, with exit time TO. The heat
kernel pO(t, x, y) is the Radon-Nikodym derivative of the Borel measure
A 7→ Px(Bt ∈ A,TO > t) with respect to the n−dimensional Lebesgue
measure, and it is characterised to be the fundamental solution of the heat
equation with Dirichlet boundary condition, that is: as a function of (t, y)
it solves the heat equation ∂tu = 1

2∆u, it vanishes continuously on ∂O, and
it satisfies the initial condition u(0, y) = δx(y).

It is well known that pO(t, x, y) tends to zero as time grows to infinity. A
classical problem is to find the exact asymptotic (in time) for the decay of the
heat kernel and the survival probability. This is well understood for bounded
domains (see [10] and [11]). For results in some planar domains we refer the

∗We thank the Center for Mathematical Modeling (CMM) Basal CONICYT Program
PFB 03.

†Thanks for the support from proyect FONDECYT 3130724, and the Programa Inicia-
tiva Cientifica Milenio grant number NC130062 through the Nucleus Millenium Stochastic
Models of Complex and Disordered Systems..

AMS 2000 subject classifications: Primary 60J65, 35K08, 35B40; secondary 60H30.
Keywords and phrases: Brownian motion, heat kernel, harmonic functions, renormal-

ized Yaglom limit

1

http://arxiv.org/abs/1501.04595v2
http://www.imstat.org/aop/
http://arxiv.org/abs/1501.04595


2 P. COLLET ET AL.

reader to [2]. The large time asymptotic problem is treated in [9] for a large
class of (non symmetric) diffusions under some integrability conditions on
the ground state. Exact asymptotic are computed for Benedicks domains in
[4], and for exterior domains in [5]. Our work focuses on finding the exact
asymptotic in time for pΩ(t, x, y) and Px(T

Ω > t) for a multicone domain Ω,
which we define next.

Let Sn−1 = {x ∈ R
n : |x| = 1} be the unit sphere in R

n. Points in R
n will

be regarded as x = rθ, where r = |x| and θ ∈ S
n−1. Given a Lipschitz,

proper subdomain D of Sn−1, and a vector a ∈ R
n, a truncated cone with

opening D and vertex a is the set

C(a,D, R) = {a+ x : x = rθ ∈ R
n : r > R, θ ∈ D} ,

where R ≥ 0. When R > 0, the set S = a + RD will be called the base of
the truncated cone. When R = 0, we will refer to the set in the previous
display as cone with vertex a.

In the same context as above, given a base S = a + RD, let 0 < λ1 <
λ2 ≤ λ3 ≤ · · · be the eigenvalues of the Laplace-Beltrami operator on D,
with corresponding orthonormal basis {m1,m2,m3, . . .} of L2(D, σ), where

σ is the surface measure on S
n−1. Let αi =

(
λi + (n2 − 1)2

)1/2
. We define

the character of the base S as the number α = α(D) = α1. The character
of the truncated cone C(a,D, R) is also defined as α.

A multicone domain Ω ⊆ R
n is a connected, open set such that there

exists a bounded domain Ω0 ⊆ Ω and finitely many truncated cones Ωj =
C(aj ,Dj, Rj), with j = 1, . . . N , such that Ωj ∩ Ωi = ∅ for 1 ≤ j < i ≤ N ,
and

Ω \ Ω0 =
N⋃

j=1

Ωj.

Here Ω0 is the closure of the set Ω0. The set Ω0 will be called the core, and
for j ≥ 1, the sets Ωj are called branches of the multi-cone set. Notice that
by construction, the branches are disjoint from the core. Also, we will denote
the base of the truncated cone Ωj by Sj . Without loss of generality, we can
assume that Rj = 1, which makes the exposition that follows much easier.
The character of the truncated cone Ωj will be denoted by αj . We define the
character of the multicone Ω as the number α = min {αj : j = 1, . . . , N}.
An index l such that αl = α will be called maximal. We denote by M the
set of maximal indices.

To state the main results of this article, we need to introduce the Martin
boundary at infinity for Ω.
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It is well known that there is a unique minimal harmonic function w
on a cone with vertex C0 = C(a,D, 0) that vanishes continuously on ∂C0.
Actually, there is only one positive harmonic function in C0 that vanishes
continuously on its boundary (Theorem 1.1 in [1]). For x = a+|x− a| θ ∈ C0

this function is given by:

v(x) = |x− a|α−(n
2
−1)m1(θ),(1.1)

where α is the character ofD andm1 is the first eigenfunction of the Laplace-
Beltrami operator on D. Notice how we have chosen to normalize w in terms
of the normalization of m1 in L2(D, σ). In order to simplify our exposition,
we set κ = 1 + α− n/2, so that v(x) = |x− α|κm1(θ).

Similarly, if C = C(a,D, R) is a truncated cone, there is a unique (min-
imal) positive harmonic function w in C that vanishes continuously on ∂C,
which is defined as follows: let T C be the exit time of a Brownian motion Bt

from the cone C. Then

w(x) = v(x)− Ex(v(BTC)), x ∈ C.(1.2)

Let wj be the unique minimal harmonic function in Ωj. By a standard
balayage argument [7], one can extend wj to a minimal harmonic function
in Ω. Such extension is given by

uj(x) = wj(x)1Ωj (x) +
1

2

∫

Sj

G(x, y)∂nwj(y)σj(dy), x ∈ Ω,(1.3)

where ∂n denotes the (inward) normal derivative on Sj , and σj is the trans-
lation of σ by aj , and G is the Green function of the domain Ω:

G(x, y) =

∫ ∞

0
p(t, x, y)dt.

Reciprocally, we have that

wj(x) = uj(x)− Exu(BT j ), x ∈ Ωj ,(1.4)

where B is an n−dimensional Brownian motion, stopped at its exit time T j

from Ωj.

It is direct to verify from the last two equations that the function uj is
bounded in Ω \ Ωj, and satisfies that for x = aj + rθ,

lim
r→∞

uj(aj + rθ)

wj(aj + rθ)
= 1,(1.5)
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for fixed θ ∈ Dj .

We are ready to state the main results of this paper.

Theorem 1.1. Let Ω be a multicone domain with branches Ω1, . . . ,ΩN .
Let α > 0 be the character of Ω, and let M be the set of maximal indices.
Then,

lim
t→∞

t1+αp(t, x, y) =
1

2αΓ(1 + α)

∑

l∈M
ul(x)ul(y),(1.6)

The limit is in the topology of uniform convergence on compact sets.

Theorem 1.2. Let Ω be a multicone domain with branches Ω1, . . . ,ΩN .
Let α > 0 be the character of Ω, and let M be the set of maximal indices.
Set κ = 1 + α− n/2. Then

lim
t→∞

tκ/2Px(T > t) =
Γ
(
κ+n
2

)

2κ/2Γ
(
κ+ n

2

)
∑

l∈M

(∫

Dl

m1
l (θ)σ(dθ)

)
ul(x).(1.7)

The limit is in the topology of uniform convergence on compact sets.

Theorem 1.3. Let Ω be a multicone domain with character α > 0, and
set β = 1 + α + n/2. Fix x ∈ Ω, and 1 ≤ j ≤ N . For each y = |y| θ, with
θ ∈ Dj, we have that aj +

√
ty ∈ Ωj, for large enough values of t, and

lim
t→∞

tβ/2p(t, x, aj +
√
ty) = 1M(j)

uj(x)vj(y)

2αΓ(1 + α)
e−|y|2/2.(1.8)

The limit is in the sense of uniform convergence on compact sets on the
variables x and y.

The paper is organized as follows. Section 2 lists some key results that we
take from the literature on heat kernels for killed diffusions, in particular,
subsection 2.1 includes our main theorems for the case of a cone with vertex.
Section 3 deals with the asymptotics for truncated cones, and Section 4
includes some lemmas leading up to the proofs of the main theorems, which
are contained at the end of Section 4 for the decay of the heat kernel, and in
Section 5 for the decay of the survival probability. Finally, Section 6 includes
the proof of Theorem 1.3 and discusses a renormalized Yaglom limit for the
killed Brownian motion.
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2. Preliminary results. In what follows we make the following sim-
plifications, in order to keep the exposition clear. We set T = TΩ, T j = TΩj

and denote by p and pj the respective heat kernels. In some of the formulas
below, integrals over Sj are understood to be with respect to the translated
measure σj, but we will omit the index since the dependence on j is clear
from the domain of integration. Also, we will abuse the notation by omit-
ting the vector aj form all the formulas involving functions in cones, since
its inclusion affects all such functions by a simple translation of coordinates.
In particular, we will write pj(t, x, y) for x = |x| θ, y = |y| η for θ, η ∈ Dj

instead of pj(t, x + aj , y + aj) in order to simplify our exposition. In this
spirit, we will often say that x → ∞ radially in Ωj to mean that x = aj+rθ,
and r → ∞.

We start by listing some general properties of heat kernels in unbounded
domains.

Lemma 2.1 (Lemma 2.1 in [5]). Let O be a regular domain for the Dirich-
let problem. Let u(t, x) be a positive solution of the heat equation in R+×O,
and consider a function a : R+ → R+ such that

sup
t≥t0,|s|≤2

a(t+ s)

a(t)
< ∞,(2.1)

for some t0 > 0. Further, assume that the family of functions {a(t)u(t, ·) : t ≥ t0}
is bounded on compact sets. Then, the family {a(t)u(t, ·) : t ≥ t0 + 1} is
equicontinuous on compact sets of O.

The next lemma corresponds to Lemmas 2.1-2.4 in [4], which are proved
for Benedicks domains in R

n. Nonetheless, the proofs work in a much more
general setting, as long as the domain O is a regular domain for the Dirichlet
problem, with infinite interior radius.

Lemma 2.2 (Lemmas 2.1-2.4 in [4]). In the same setting of Lemma 2.1,
for x, y ∈ O and s ∈ R we have

lim
t→∞

p(t+ s, x, y)

p(t, x, y)
= 1.(2.2)

The limit is uniform in compact sets of O. Also, the map t 7→ p(t, x, x) is
decreasing.
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Lemma 2.3. In the same setting as in Lemma 2.2, further assume that
for all s ∈ R,

lim
t→∞

a(t+ s)

a(t)
= 1.(2.3)

If a(t)p(t, x, y) ≤ C
1+|y|
x for large enough t, then any limit point of a(t)p(t, ·, ·)

(in the topology of uniform convergence on compact sets) has the following
properties:

(i) is a symmetric, non-negative function;
(ii) is harmonic in each component;
(iii) and vanishes continuously on ∂O.

Proof. For the sake of simplicity we denote ht(x, y) = a(t)p(t, x, y). Let
tk → ∞ be a sequence such that htk converges uniformly on compact sets of
O to a function h. It is clear that h is symmetric and non-negative. Notice
that for any s ∈ R, the sequence htk+s also converges uniformly on compact
sets of O. This is direct from Lemma 2.2 and the hypothesis.

By the Chapman-Kolmogorov equation, for any s ∈ R and large enough
k ∈ N,

htk+s(x, y) =
a(tk + s)

a(tk)

∫

Ω
htk(x, z)p(s, z, y)dz.

By assumption, htk(x, z) ≤ C
1+|z|
x , which is p(s, z, y)dz-integrable as it can

be checked by comparing p with the free Brownian motion’s kernel. Thus,
we can apply the Dominated Convergence Theorem to obtain

h(x, y) =

∫

Ω
h(x, z)p(s, z, y)dz = Ey(h(x,Xs)).

It is standard to show that h(x,Xs) is a martingale, from where its standard
to deduce that y 7→ h(x, y) is harmonic by means of the optional sampling
theorem.

Consider a sequence yn ∈ O, with yn → y ∈ ∂O. By using once again
the Gaussian upper bound on p, and applying the Dominated Convergence
Theorem to h(x, z)p(1, z, yn), it is deduced that h(x, ·) vanishes continuously
on ∂O.
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Lemma 2.4. Let U and O be domains in R
n that are regular for the

Dirichlet problem. For ξ ∈ ∂U , x ∈ U

Px(BTU ∈ σ(dξ), TU ∈ ds) =
1

2
∂np

U (s, x, ξ)σ(dξ)ds.(2.4)

Here, ∂n represents the inward normal derivative at ξ ∈ ∂U .

Also, if U ⊆ O, then

pO(t, z, y) = pU (t, z, y) +

∫ t

0

∫

∂U

1

2
∂np

U (s, x, ξ)pO(t− s, ξ, y)σ(dξ)ds.

(2.5)

Proof. These results are well known so we only are going to comment
their proofs. The proof of (2.4) uses Green’s theorem and the heat equa-
tion, and it is very straightforward carry out. Equation (2.5) follows as an
elementary application of the strong Markov property at time TU .

The following lemma characterizes all positive, harmonic functions van-
ishing on ∂Ω. In other words, we characterise the Martin boundary of Ω.
We use the notation from the Introduction.

Lemma 2.5. Let u1, . . . , uN be the minimal harmonic functions given
by (1.3). For every nonnegative harmonic function u in Ω, vanishing con-
tinuously on ∂Ω, there are unique nonnegative coefficients γ1, · · · , γN such
that

u(x) =
N∑

j=1

γjuj(x), x ∈ Ω.(2.6)

Proof. For x ∈ Ωj, consider the harmonic function w̃j(x) = u(x) −
Ex(u(BT j )). It is standard to check that w̃j is harmonic in Ωj , and that

vanishes continuously on ∂Ωj . For m > R, let T j
m be the exit time from

the set Ωj ∩B(aj ,m). By Itô’s formula, the process u(B
t∧T j

m
) is a bounded

martingale under Px, for x ∈ Ωj. Therefore,

u(x) = Ex

(
u(B

T j
m
)
)
= Ex

(
u(B

T j
m
)1{T j

m<T j}
)
+ Ex

(
u(BT j )1{T j

m=T j})
)

≥ Ex (u(BT j ))− Ex

(
u(BT j )1{T j

m<T j})
)
.
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Since T j
m ր T j, monotone convergence shows that u(x) ≥ Ex (u(BT j )), that

is, w̃j is nonnegative. Thus, w̃j(x) = γjwj(x) by uniqueness. For z ∈ Ω, set

ũ(z) =

N∑

j=1

γjuj(z)− u(z),

which is harmonic in Ω, and vanishes continuously on ∂O. We will next show
that ũ is bounded, for which it is enough to show that it is bounded in each
branch of Ω.

Fix i ∈ {1, . . . , N}, and consider x ∈ Ωi. We have

ũ(x) = −Ex (u(BT i)) + γiEx (ui(BT i)) +

N∑

j=1,j 6=i

γjuj(x)

The first term on the right hand side is bounded by supx∈Γi
|u(x)|, and the

second one by γi supx∈Γi
|ui(x)|. The summation is bounded as each term

uj(x) is bounded in Ωi. We conclude that ũ is harmonic and bounded in Ω,
and vanishes continuously on ∂Ω. It follows that ũ (Bt∧T ) is a martingale,
and so

ũ(z) = Ez (ũ (Bt∧T )) → 0, as t → ∞.

Uniqueness follows from the boundedness of uj in Ω\Ωj , and its unbound-
edness in Ωj.

2.1. Asymptotics in a cone with vertex. In what follows we consider a
cone V , with opening D and vertex a = 0, that is, V = C(0,D, 0). Let pV

be the heat kernel in V . Let 0 < λ1 < λ2 ≤ λ3 ≤ · · · be the eigenvalues of
the Laplace-Beltrami operator on D, with corresponding orthonormal basis

{m1,m2,m3, . . .} of L2(D, σ). We also denote by αi =
(
λi + (n2 − 1)2

)1/2
.

The behaviour of the heat kernel with Dirichlet boundary conditions is
well known for a cone with vertex. The following results are taken from [3].

Theorem 2.6. For x = rθ, y = ρω ∈ V , with θ, ω ∈ D and r = |x|,
ρ = |y|, the heat kernel with Dirichlet boundary conditions in V is given by:

pV (t, x, y) =
exp

(
− r2+ρ2

2t

)

t (rρ)
n
2
−1

∞∑

i=1

Jαi

(rρ
t

)
mi(θ)mi(ω)(2.7)
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where Jν is the modified Bessel function of first kind of order ν, that is, the
solution of

z2J ′′
ν (z) + zJ ′

ν − (z2 + ν2)Jν = 0,

satisfying the growing conditions:

zν

2νΓ(1 + ν)
≤ Jν(z) ≤

zν

2νΓ(1 + ν)
ez,(2.8)

for z > 0, and ν ≥ 0.

Recall that the unique minimal positive harmonic function in V is given

by v(x) = v(|x| θ) = |x|α1−(n
2
−1)m1(θ).

Corollary 2.7. For each x, y ∈ V , we have

lim
t→∞

t1+α1

pV (t, x, y) =
v(x)v(y)

2α1Γ(1 + α1)
(2.9)

lim
t→∞

pV (t, x, y)

pV (t, w, z)
=

v(x)v(y)

v(w)v(z)
(2.10)

Both limits are uniform in compact sets.

Proof. Clearly, (2.10) follows from (2.9), so we only prove the latter.
From Theorem 2.6, we get the bound

∣∣∣∣t
1+α1

pV (t, x, y)− v(x)v(y)

2α1Γ(1 + α1)

∣∣∣∣ ≤ C

∣∣∣∣∣
tα

1

e−
r2+s2

2t

(rs)
n
2
−1

Jα1

(rs
t

)
− (rs)α

1−(n
2
−1)

2α1Γ(1 + α1)

∣∣∣∣∣+

+ t−(α2−α1)
∞∑

k=2

(rs)αk−(n
2
−1)

2αkΓ(1 + αk)
,

where C = supθ∈Dm1(θ)2. The uniform convergence on compact sets for
the first term is easily deduced from (2.8). The series on the right hand side
converges uniformly in compact sets, so the whole term converges to zero,
as t → ∞, since α2 > α1.

3. Asymptotics in a truncated cone. The main goal of this section
is to extend Corollary 2.7 to a truncated cone C = C(a,D, R). As before,
we assume that R = 1 and a = 0.

We will often use the following version of the Harnack inequality up to
the boundary.
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Theorem 3.1 (From [12], see also [8]). Let O be a precompact, regular
domain for the Dirichlet problem, and let u ≥ 0 be a solution of the heat
equation on O×[0, T ) with Dirichlet boundary condition. Then, given x ∈ O,
there is C1 > 0 such that u(t, z) ≤ C1u(T, x), for all (t, z) ∈ [0, T )×O where
the constant C1 depends only on x and T − t.

Corollary 3.2. Let V be a cone with vertex. For any x ∈ V there is a
constant Cx > 0, only dependent on x, such that for all y ∈ V the following
inequality holds for all t > 1:

pV (t, x, y) ≤ C1+|y|
x pV (t, x, x).(3.1)

Proof. Assume |x| = 1, otherwise the corollary follows by scaling. The
inequality holds for small |y|, by a direct application of the boundary Har-
nack inequality (Theorem 3.1), so we assume that |y| > 2.

Let r be positive, but small enough so that B (x, r) ⊆ V . It follows
by scaling that B (νx, r) ⊆ V for all ν ≥ 1. Thus, applying the standard
parabolic Harnack inequality several times in the ball B(0, r) to the function
u(s, z) = pV (t+ s, νx+ z, y) for fixed, but arbitrary ν > 1, y ∈ V , we get

pV (t, νx, y) ≤ C1+rν
2 pV (t+ 1 + rν, x, y) ≤ C2+2rν

2 pV (t+ 2 + 2rν, νx, y),

for a positive constant C2 that only depends on x.

The heat kernel in V has the following scaling property:

pV (t, x, y) = λ−npV
(

t

λ2
,
x

λ
,
y

λ

)
, λ > 0.

From all the inequalities above, it follows that

pV (t, x, y) ≤ C
1+|y|
3 pV (t+ 1 + r |y| , x |y| , y)

= C
1+|y|
3 |y|−n pV

(
t+ 1 + r |y|

|y|2
, x,

y

|y|

)

≤ C1C
1+|y|
3 |y|−n pV

(
t+ 1 + r |y|

|y|2
+ 1, x, x

)

≤ C1C
1+|y|
3 |y|−n pV

(
t

|y|2
, x, x

)
,

where the second to last line comes from the boundary Harnack inequality,
whereas the last one comes form the fact that t 7→ pV (t, x, x) is decreasing
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(see Lemma 2.2). Applying scaling once again,

pV (t, x, y) ≤ C1C
1+|y|
3 pV (t, x |y| , x |y|)

≤ C1C
3+3|y|
3 pV (t, x, x) ,

as desired.

Lemma 3.3. Let C = C(a,D, 1), S = a+D, and V = C(a,D, 0). There
is a universal constant Q > 0 such that for any x ∈ C, and ξ ∈ S,

lim sup
t→∞

∂np
C(t, x, ξ)

pV (t, x, x)
≤ Q

v(x)
,(3.2)

where v is the unique minimal harmonic function in V , normalized as in
(1.1).

Proof. By a translation of coordinates, we can assume a = 0. Set U =
B(0, 1)c. By monotonicity of domains, and since both pC(t, x, ·) and pU (t, x, ·)
vanish on S, we have that 0 ≤ ∂np

C(t, x, ξ) ≤ ∂np
U(t, x, ξ). Recall that there

are constants A > 0, B > 0 such that ∂np
U (1, x, ξ) ≤ A exp(−B |x|2), so

0 ≤ ∂np
C(1, x, ξ) ≤ A exp(−B |x|2) for ξ ∈ S. These bounds allows us to

compute the normal derivative from the Chapman-Kolmogorov equation as
follows

∂np
C(t+ 1, x, ξ) =

∫

C

pC(t, x, z)∂np
C(1, z, ξ)dz(3.3)

≤
∫

C

pV (t, x, z)∂np
C(1, z, ξ)dz.

Thus,

∂np
C(t+ 1, x, ξ)

pV (t, x, x)
≤

∫

C

pV (t, x, z)

pV (t, x, x)
∂np

C(1, z, ξ)dz.

We intend to apply the Dominated Convergence Theorem to the integral on
the right hand side. Equation (2.10) shows pointwise convergence as t → ∞,
and Corollary 3.2 together with the remarks at the beginning of this proof
show that the integrand is dominated. Therefore

lim sup
t→∞

∂np
C(t+ 1, x, ξ)

pV (t, x, x)
≤ 1

v(x)

∫

C

v(z)∂np
C(1, z, ξ)dz.

The integral can be estimated using the explicit formula for v(z), and the
bound for ∂np

C(1, z, ξ) discussed at the beginning of this proof. Finally, we
use Lemma 2.2 to conclude.
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Theorem 3.4. Let V a cone with opening D and vertex a, and let its
truncated version be C = C(a,D, 1). Let w be the unique minimal positive
harmonic function in C. Then, for all x, y ∈ C,

lim
t→∞

t1+α1

pC(t, x, y) =
w(x)w(y)

2α1Γ(1 + α1)
,(3.4)

where α1 is the character of C. The limit is in the sense of uniform conver-
gence on compact sets.

Proof. The proof relies on equation (2.5) and the Dominated Conver-
gence Theorem. Let

I1(t) =
1

2

∫ t/2

0

∫

S

∂np
C(s, x, ξ)pV (t− s, ξ, y)σ(dξ)ds

I2(t) =
1

2

∫ t

t/2

∫

S

∂np
C(s, x, ξ)pV (t− s, ξ, y)σ(dξ)ds.

Then, equation (2.5) and Theorem 2.6 yield,

v(x)v(y)

2α1Γ(1 + α1)
≤ lim sup

t→∞
t1+α1

pC(t, x, y) + lim sup
t→∞

t1+α1

(I1(t) + I2(t)) .

(3.5)

We start by studying I1(t). For 0 ≤ s ≤ t/2, Theorem 2.6 shows that

t1+α1

pV (t− s, ξ, y) converges to v(ξ)v(y)

2α1Γ(1+α1)
. Besides, by using Corollary 3.2

we get the following bound:

t1+α1

pV (t− s, ξ, y) = 21+α1

(t/2)1+α1

pV (t− s, ξ, y)

≤ 21+α1

C1C
1+|y|
2 (t/2)1+α1

pV (t− s, x, x)

≤ 21+α1

C1C
1+|y|
2 (t/2)1+α1

pV (t/2, x, x).

The right hand side is uniformly bounded for t > 1, so the Dominated
Convergence Theorem applies:

lim
t→∞

t1+α1

I1(t) =
1

2

∫ ∞

0

∫

S

∂np
C(s, x, ξ)

v(ξ)v(y)

2α1Γ(1 + α1)
σ(dξ)ds =

v(y)Ex(v(BTC))

2α1Γ(1 + α1)
.

Next, we study the asymptotics of I2(t). Since we don’t have sharp asymp-
totics for ∂np

C yet, we are not able to use the Dominated Convergence The-
orem. Instead, we will resort to Fatou’s lemma. For t/2 ≤ s ≤ t, Lemma 3.3
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an Theorem (2.6) imply that

lim sup
t→∞

t1+α1

∂np
C(s, x, ξ) ≤ Q1v(x)

2α1Γ(1 + α1)
,

where Q1 only depends on x. To show domination, we combine equations
(3.1) and (3.3) to get the bound

t1+α1

∂np
C(s, x, ξ) ≤ t1+α1

∫

C

pV (s− 1, x, z)∂np
C(1, z, ξ)dz

≤ t1+α1

pV (t/2− 1, x, x)

∫

C

C
1+|z|
2 ∂np

C(1, z, ξ)dz.

The right hand side is uniformly bounded in t > 2 by a constant Q2 that
only depends on x. It follows that

lim sup
t→∞

t1+α1

I2(t) ≤
Q1v(x)

2α1Γ(1 + α1)

∫ ∞

0

∫

S

pV (s, ξ, y)σ(dξ)ds

=
Q1v(x)

2α1Γ(1 + α1)
GV (S, y).

Using these two estimates in equation (3.5) we obtain,

v(x)v(y)

2α1Γ(1 + α1)
≤ lim sup

t→∞
t1+α1

pC(t, x, y) +
v(y)Ex(v(BTC)) +Q1v(x)G

V (Γ, y)

2α1Γ(1 + α1)
.

Recall that w(x) = v(x)− Ex(v(BTC)) for x ∈ C. Thus,

w(x)v(y)

2α1Γ(1 + α1)
≤ lim sup

t→∞
t1+α1

pC(t, x, y) +
Q1v(x)G

V (Γ, y)

2α1Γ(1 + α1)
.(3.6)

We will deduce the theorem from this last estimate. By Corollary 3.2, it
is possible to apply Lemma 2.3 to t1+α1

pC(t, x, y). Therefore, any limit point
of this family has the form ηw(x)w(y) for some η ≥ 0. Different limit points
will correspond to different values of η. We will show that this is not the
case: by monotonicity of domains, ηw(x)w(y) ≤ v(x)v(y)

2α1Γ(1+α1)
, and since w(z)

and v(z) have the same asymptotic behavior for radially convergent z → ∞,
we deduce that η ≤ 1

2α1Γ(1+α1)
. Let η∗ = sup η, where the supremum is taken

over all possible limit points. Equation (3.6) then yields

w(x)v(y)

2α1Γ(1 + α1)
≤ η∗w(x)w(y) +

Q1v(x)G
V (Γ, y)

2α1Γ(1 + α1)
.
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Dividing this equation by v(y) and taking y radially to infinity, the second
term on the right hand side vanishes in the limit as GV (Γ, y) is bounded
for y away form Γ. We obtain that η∗ ≥ 1

2α1Γ(1+α1)
, which shows that the

only possible limit point is the one given by (3.4). Uniform convergence on
compact sets follows from Lemma 2.1.

4. Asymtotics in multicone domains. We start by fixing x0 ∈ Ω,
and a sequence (tk) such that

F (x, y) = lim
k→∞

p(tk, x, y)

p(tk, x0, x0)
=

k∑

i,j=1

γijui(x)uj(y),

where the converges is uniform in compact sets of Ω × Ω, and uj are the
minimal harmonic functions in Ω. This is obtained by a double application
of Lemma 2.5. The coefficients γij ≥ 0 might depend on the sequence (tk).
Notice that F (x0, x0) = 1.

By passing to subsequences of (tk), we can assume that for all j = 1, . . . , k
we have that

Fj(x, y) = lim
k→∞

pj(tk, x, y)

p(tk, x0, x0)
= µjwj(x)wj(y)

is well defined. The convergence is uniform in compact sets of Ωj ×Ωj . The
coefficient µj ≥ 0 may also depend on the sequence (tk).

Our goal is to compute explicitly the coefficients γij . In order to do this,
we will use equation (2.5) with O = Ω, and U = Ωj, and estimate the
integral involved in (2.5).

It will be convenient to fix points ξj ∈ Sj , and zj ∈ Ωj. For x ∈ Ωj,
y ∈ Ω, j = 1, . . . , N , we define the following object

Ix,yj (a, b; t) =

∫ b

a

∫

Sj

Px(BT j ∈ dξ, T j ∈ du)p(t− u, ξ, y).(4.1)

Most of the technical work of this section will be devoted to find convenient
estimates for Ix,yj .

We start with a lemma about the function Fj . Recall that M denotes the
set of maximal indices.

Lemma 4.1. We have that µj = µ for j ∈ M, and µj = 0 for j /∈ M.
Also, there is a constant C, independent of the sequence (tk), such that
µ ≤ C.
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Proof. Recall that αj denotes the character of the branch Ωj. For j, l =
1, . . . , N , and points x ∈ Ωj , y ∈ Ωl we have

pj(t, x, x)

p(t, x0, x0)
=

t1+αjpj(t, x, x)

t1+αlpl(t, y, y)

pl(t, y, y)

p(t, x0, x0)

1

tαj−αl
.

It follows that

µjwj(x)
2 = lim

k→∞
pj(tk, x, x)

p(tk, x0, x0)
=

2αlΓ(1 + αl)wj(x)
2

2αjΓ(1 + αj)wl(y)2
µlwl(y)

2 lim
t→∞

1

tαj−αl
,

If j /∈ M and l ∈ M, we have αl < αj, and so µj = 0. If both j, l ∈ M, we
have αj = αl, and so µj = µl = µ, only depending on (tk).

Pick any j ∈ M. By Harnack’s inequality we have

pj(tk, zj , zj)

p(tk + 2, x0, x0)
≤ C2

H

pj(tk, zj , zj)

p(tk, zj , zj)
≤ C2

H ,

by monotonicity of domains. Using Lemma 2.2, we see that the left hand
side above converges to µwj(zj)

2, thus,

µ ≤ C2
H

wj(zj)2
≤ C2

H

infj wj(zj)2

as desired.

Lemma 4.2. There is a constant C > 1 such that, for every M > 2,
every index 1 ≤ j ≤ N , m ∈ M, and points x ∈ Ωj, y ∈ Ω we have for
tk > 2M + 1

lim sup
k

Ix,yj (0,M ; tk)

p(tk, x0, x0)
≤ CPx (BT j ∈ Sj)F (ξj , y),(4.2)

lim sup
k

Ix,yj (tk −M, tk; tk)

p(tk, x0, x0)
≤ C1M(j)G(Sj , y)wj(x)wj(zj),(4.3)

lim sup
L

lim sup
k

Ix,yj (L, tk − L; tk)

p(tk, x0, x0)
≤ C1M(j)

wj(x)

wm(z)
F (z, y),(4.4)

where the last equation holds for any z ∈ Ωm. The constant C depends only
on the domain Ω and our choices of zj .

Proof. Take k large enough such that tk > 2M + 1. By the boundary
Harnack inequality, there exists a positive C1 such that for all u ∈ [0, tk−1],
all y ∈ Ω, and all i = 1, . . . , N

p(tk − u, ξ, y) ≤ C1p(tk − u+ 1, ξi, y).(4.5)
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By Fatou’s lemma and Lemma 2.2 we get

lim
k

Ix,yj (0,M ; tk)

p(tk, x0, x0)
≤ C1

∫ M

0

∫

Sj

Px(BT j ∈ dξ, T j ∈ du)F (ξj , y),

from which (4.2) follows easily.

For u ∈ [0,M ], Lemma 3.3, Theorem (3.4), equation (3.3) and the Dom-
inated Convergence Theorem yield

lim
k→∞

∂np
j(tk − u, x, ξ)

pj(tk, x, zj)
=

∂nwj(ξ)

wj(zj)
,(4.6)

where the convergent sequence is bounded by a constant that only depends
on M , x and zj (see Lemma 3.3). It follows by the Dominated Convergence
Theorem, and Harnack’s inequality, that

lim
k

Ix,yj (tk −M, tk; tk)

p(tk, x0, x0)
≤ lim

k

pj(tk, x, zj)

p(tk, x0, x0)

∫ M

0

∫

Sj

1

2

∂nwj(ξ)

wj(zj)
p(u, ξ, y)σ(dξ)du

≤ C2G(Sj , y) lim
k

pj(tk, x, zj)

p(tk, x0, x0)
,

where C2 = max
j=1....,N

1
2vj (zj)

supξ∈Sj
∂nwj(ξ)σ(Sj). This inequality and Lemma

4.1 prove (4.3).

Recall that there is r0 > 0 such that for all i = 1, . . . , N , we have B2r0(ξi)∩
{|x| = 1} ⊆ Si. For x ∈ Ωj, z ∈ Ωm, set

CL
jm(x, z) = sup

t>L

∫
Sj

∂np
j(t, x, ξ)σ(dξ)

∫
Sm∩Br0 (ξm) ∂np

m(t, z, ξ′)σ(dξ′)
,

which is finite since m ∈ M. From Lemma 3.3, Theorem 3.4, and the Dom-
inated Convergence Theorem, we obtain

lim
L→∞

CL
jm(x, z) = 1M(j)

wj(x)

wm(z)

∫
Sj

∂nwj(ξ)σ(dξ)∫
Sm∩Br0

(ξm) ∂nwm(ξ′)σ(dξ′)
≤ C31M(j)

wj(x)

wm(z)
,

for a constant C3 > 0.

From the standard Harnack inequality we have p(t−u+1, ξm, y) ≤ C4p(t−
u+2, ξ′, y) for all ξ′ ∈ Br0 (ξm). The previous discussion yields the following
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series of inequalities

Ix,yj (L, tk − L; tk) ≤ C1

∫ tk−L

L

∫

Sj

1

2
∂np

j(u, x, ξ)p(tk − u+ 1, ξm, y)σ(dξ)du

≤ C1C
L
jm(x, z)

∫ tk−L

L

∫

Sm∩Br0
(ξm)

1

2
∂np

m(u, z, ξ′)p(tk − u+ 1, ξm, y)σ(dξ′)du

≤ C1C4C
L
jm(x, z)

∫ tk−L

L

∫

Sm∩Br0
(ξm)

1

2
∂np

m(u, z, ξ′)p(tk − u+ 2, ξ′, y)σ(dξ′)du

≤ C1C4C
L
jm(x, z)

∫ tk−L

L

∫

Sm

1

2
∂np

m(u, z, ξ′)p(tk − u+ 2, ξ′, y)σ(dξ′)du

≤ C1C4C
L
jm(x, z)p(tk + 2, z, y).

Equation (4.4) now follows from Lemma 2.2.

Lemma 4.3. For the coefficients of the function F defined at the begin-
ning of this section:

(i) γij = 0 if i /∈ M or j /∈ M.
(ii) There is a universal constant C depending only on the domain Ω such

that γij ≤ Cγjm for i, j,m ∈ M, with i 6= j.

Proof. Let x ∈ Ωi and y ∈ Ωj. By (2.5),

p(t, x, y) = pi(t, x, y)δij + Ix,yi (0, t; t).

From Lemmas 4.2 and 4.1 we obtain for m ∈ M, z ∈ Ωm,

F (x, y) ≤ δijµiwi(x)wi(y) + C

(

F (ξi, y) +G(Si, y)1M(i)wi(x)wi(zi) + 1M(i)
wi(x)

wm(z)
F (z, y)

)

≤ C1M(i)wi(x)

(

δijwj(y) +G(Si, y)wi(zi) +
F (z, y)

wm(z)

)

+CF (ξi, y).

The use of this inequality is twofold. First, if i /∈ M, by taking x radially
to infinity in Ωi we find that γijui(x)uj(y) ≤ CF (ξi, y) is only possible if
γij = 0. By symmetry of the kernel we conclude (i).

Secondly, consider i, j,m ∈ M, with i 6= j and z ∈ Ωm. Dividing the
inequality by wi(x)wj(y), and taking x, y, z → ∞ radially in their respective
branches, we obtain that γij ≤ Cγmj , as desired.

Remark 4.1. Set γ∗ = maxi∈M γii and fix m ∈ M such that γ∗ = γmm.
The previous lemma states that γij ≤ Cγ∗ for all i, j ∈ M. Also, notice that

γmmum(x)um(y) ≤ F (x, y) ≤ (1 + C)γmm

∑

i,j∈M
ui(x)uj(y).
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Since F (x0, x0) = 1, we obtain that γ∗ is bounded below by a constant that
is independent of the sequence (tk).

It follows that

lim
k

p(tk, x, y)

p(tk, z, z′)
=

F (x, y)

F (z, z′)
≤ (1 + C)

∑

i,j∈M

ui(x)uj(y)

um(z)um(z′)

where the constant C comes from Lemma 4.2. In particular, if x ∈ Ωm, the
inequality

lim sup
t→∞

p(t, x, ξm)

p(t, x, x)
≤ 1 + C

um(x)

∑

j∈M

uj(ξm)


1 +

1

um(x)
sup
z∈Ωm

∑

i6=m

ui(z)


(4.7)

holds. If we fix x̂ ∈ Dm, and let r > 0 be suficiently large, for x = am + rx̂
this inequality implies that

lim sup
t→∞

p(t, x, x0)

p(t, x, x)
≤ C5

um(x)
,(4.8)

where C5 > 0 is independent of r.

Lemma 4.4. The following inequalities hold

0 < lim inf t1+αp(t, x, y), lim sup t1+αp(t, x, y) < ∞.

Proof. The first inequality is direct from monotonicity of domains and
Theorem 3.4 applied to Ωm ⊆ Ω.

For the second one, notice that by Harnack’s inequaliy, it suffices to prove
the theorem for x = y ∈ Ωm. We start by setting some constants that will
be relevant to our estimates: fix x̂ ∈ Dm, and consider x = am + rx̂. Then,
the Harnack constant

CH = sup
s>1,ξ∈Sm

p(s, ξ, rx̂)

p(s+ 1, ξm, rx̂)
,

is independent of r > 1.

Fix 0 < θ < 1. In view of (4.8), we can find x ∈ Ωm such that

CH21+α lim sup
t→∞

p(t, ξm, x)

p(t, x, x)
≤ CH21+α C5

um(x)
=

θ

2
.
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We fix such an x = am + rx̂ from now on. It follows that for large enough
t0, the inequality

p(t, ξm, x)

p(t, x, x)
≤ θ

21+αCH
, ∀ t > t0(4.9)

holds.

Next we get estimates using technics somewhat similar to the ones we
have used in Lemma 4.2. Let t > 2t0. By Harnack’s inequality, and since
t 7→ p(t, x, x) is decreasing

Ix,xm (0, t/2; t) ≤ CH

∫ t/2

0
Px(BTm ∈ Sm, Tm ∈ du)p(t− u+ 1, ξm, x)du

≤ θ

21+α
Px(BTm ∈ Sm, Tm < t/2)p(t/2, x, x)

≤ θ

21+α
p(t/2, x, x).

It follows that for all t > 2t0,

t1+αIx,xm (0, t/2; t) ≤ θ

(
t

2

)1+α

p (t/2, x, x) .

On the other hand,

t1+αIx,xm (t/2, t; t) ≤
∫ t/2

0

∫

Sm

t1+α

2
∂np

m(t− u, x, ξ)p(u, ξ, x)σ(dξ)du.

The right hand side converges by (4.6), Theorem 3.4, and the Dominated
Convergence Theorem, to

C2 =
wm(x)

21+αΓ(1 + α)

∫ ∞

0

∫

Sm

∂nwm(ξ)p(u, ξ, x)σ(dξ)du < ∞.

Putting together these two estimates, we have that, for the continuous
function ϕ(t) = t1+αp(t, x, x), t ≥ 2t0, it holds that

ϕ(t) ≤ C3 + θϕ(t/2), t > 2t0,

where C3 = C2+
wm(x)2

2αΓ(1+α) . By iteration of the inequality above, it is easy to

deduce that, if t/2N ∈ [2t0, 4t0] then

ϕ(t) ≤ C3

N−1∑

k=0

θk + θNϕ(t/2N ) ≤ C3

1− θ
+ sup

s∈[2t0,4t0]
ϕ(s),

which finishes the proof.
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4.1. Proof of Theorem 1.1. The proof is reminiscent of the one we gave
for Theorem 3.4. For fixed x, y ∈ Ω, Lemma 4.4 ensures that t1+αp(t, x, y)
is bounded. Harnack’s inequality then ensures that the same holds for x, y
in any compact set of Ω. This shows that Lemmas 2.1 and 2.3 apply. Let
(tk) be a sequence such that t1+α

k p(tk, ·, ·) converges uniformly on compact

sets. The limit then has the form H(x, y) =
∑N

i,j=1 ηijui(x)uj(y), where ηij
might depend on the sequence (tk).

Let x ∈ Ωm, and y ∈ Ω. Set

I1(t) =
1

2

∫ t/2

0

∫

Sm

∂np
m(s, x, ξ)p(t− s, ξ, y)σ(dξ)ds,

I2(t) =
1

2

∫ t

t/2

∫

Sm

∂np
m(s, x, ξ)p(t− s, ξ, y)σ(dξ)ds.

An application of the Dominated Convergence Theorem, as in the proof of
Lemma 4.4, yields that

lim
k→∞

t1+α
k I1(tk) =

1

2

∫ ∞

0

∫

Sm

∂np
m(s, x, ξ)H(ξ, y)σ(dξ)ds

= Ex (H (BTm , y)) .

On the other hand, by using equations (1.3) and (1.4)

lim
k→∞

t1+α
k I2(tk) = 1M(m)

1

2

∫ ∞

0

∫

Sm

wm(x)∂nwm(ξ)p(t− s, ξ, y)σ(dξ)ds

= 1M(m)
wm(x) (um(y)−wm(y))

2αΓ(1 + α)
.

Using these two estimates, and (2.5), we arrive to

H(x, y) = Ex (H (BTm , y)) + 1M(m)
wm(x)um(y)

2αΓ(1 + α)
, x ∈ Ωm, y ∈ Ω.

Recall that Ex (H (BTm , y)) is bounded as function of x. By taking the limit
of H(x, y)/um(x), with x going radially to infinity, we find that

N∑

j=1

ηmjuj(y) = 1M(m)
um(y)

2αΓ(1 + α)
,

By uniqueness of the decomposition (2.6), we find that the only nonzero
coefficients are γmm = 1

2αΓ(1+α) for m ∈ M. This shows (1.6). Uniform
convergence on compact sets is direct from Lemma 2.1.

The following corollary is a direct consecuence of the previous theorem.
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Corollary 4.5. Let Ω be a mutlticone domain, with maximal index set
M. Then,

lim
t→∞

p(t, x, y)

p(t, w, z)
=

∑
j∈M uj(x)uj(y)∑
j∈M uj(w)uj(z)

.(4.10)

The convergence is uniform in compact sets.

5. Asymptotics for the exit time. The following result is taken form
[3].

Theorem 5.1. Let V ⊆ R
n be a cone with vertex 0 and opening D.

Assume that D is regular por the Laplace-Beltrami operator on S
n−1, and

let α be the character of D. Set κ = 1+α−n/2, and let T V be the Brownian
exit time from V . Then, for each x ∈ V ,

lim
t→∞

tκ/2Px(T
V > t) = γV v(x).(5.1)

Here v(x) = |x|κm1(x/ |x|) is the harmonic function defined in (1.1), where
m1 is the only non-negative eigenfunction of the Laplace-Beltrami operator
on D with Dirichlet boundary conditions. Also,

γV =
Γ
(
κ+n
2

)

2κ/2Γ
(
κ+ n

2

)
∫

D

m1(θ)σ(dθ).

Remark 5.1. From this theorem, the scaling property of the heat kernel
in V , and Harnack’s inequality up to the boundary, we get the following
bound:

tκ/2Px(T
V > t) = tκ/2Px/|x|

(
T V >

t

|x|2
)

≤ CHtκ/2Pξ

(
T V >

t

|x|2
)

≤ CH |x|κ
(

t

|x|2
)κ/2

Pξ

(
T V >

t

|x|2
)
.

where ξ ∈ D is fixed. Using (5.1), we can pick tξ such that whenever t/ |x|2 >
tξ, the right hand side of the last display is bounded by C |x|κ, where C

depends on our choice of ξ. For t/ |x|2 ≤ tξ, we have that tκ/2 ≤ t
κ/2
ξ |x|κ.

We deduce that there is a universal constant C > 0 such that

tκ/2Px(T
V > t) ≤ C |x|κ , x ∈ V, t > 0.(5.2)

By monotoncity of domains, the same inequality holds for T C, and x ∈ C,
where C is any truncated cone with opening D.
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The following lemma will be the key tool when extending the previous
result to multicones.

Lemma 5.2. Let T be the exit time from a multicone set Ω, let T j be the
exit time from Ωj, and pick x ∈ Ωi for some i = 1, . . . , N . We have

Px(T > t) = Px(T
i > t) + Px(Bt ∈ Ω0, T > t)+

+
1

2

N∑

j=1

∫ t

0

∫

Sj

∂nPz(T
j > t− s)p(s, x, z)σ(dz)ds.(5.3)

Proof. For j = 1, . . . , k, and 0 ≤ s ≤ t define the functions

fj(s) =

∫

Ωj

Pz(T
j > t− s)p(s, x, z)dz.

For s < t, since u(s, z) = Pz(T
j > s), and v(s, z) = p(s, x, z) are solutions of

the heat equation with dirichlet boundary condition in Ωj and Ω respectively,
we have by Green’s formula

dfj(s)

ds
=

1

2

∫

Ωj

−p(s, x, z)∆zPz(T
j > t− s) + Pz(T

j > t− s)∆zp(s, x, z)dz

=
1

2

∫

Sj

p(s, x, z)∂nPz(T
j > t− s)− Pz(T

j > t− s)∂np(s, x, z)σ(dz)

=
1

2

∫

Sj

p(s, x, z)∂nPz(T
j > t− s)σ(dz),

where, as usual, ∂n represents the (inward) normal derivative. Then, for
every ε > 0,

fj(t− ε)− fj(0) =
1

2

∫ t−ε

0

∫

Sj

p(s, x, z)∂nPz(T
j > t− s)σ(dz).(5.4)

In order to extend this equation to ε = 0, we need an estimate for ∂nPz(T
j >

u) for u near zero. The process B leaves Ωj before the norm of B hits level
1. Since ρt = |Bt| is a Bessel process, if we let τ be the hitting time of 1 for
an n−dimensional Bessel process, then, for t < τ ,

ρt = |z|+ βt +
n− 1

2

∫ t

0
ρ−1
s ds ≤ |z|+ βt +

n− 1

2
t,

for some one dimensional Brownian motion βt. Let τµ be the hitting time
of zero for the Brownian motion with drift βt +µt, with µ = n−1

2 . It follows
that

Pz(T
j > u) ≤ P|z|(τ > u) ≤ Pr(τ

µ > u), r = |z| − 1.
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As Pz(T
j > u) vanishes on Sj , we get ∂nPz(T

j > u) ≤ ∂rPr(τ
µ > u)|r=0.

The distribution of τµ is well known (see equation (5.12), pp 197 [6]):

Pr(τ
µ ∈ dt) =

r√
2πt3

exp

[
−(r + µt)2

2t

]
dt, t > 0.

A direct computation shows that

Pr(τ
µ > u) =

∫ ∞

u

r√
2πt3

exp

[
−(r + µt)2

2t

]
dt,

∂rPr(τ
µ > u)|r=0 =

∫ ∞

u

1√
2πt3

exp

[
−µ2t

2

]
dt

≤
∫ 1

u

t−3/2

√
2π

dt+

∫ ∞

1

1√
2π

exp

[
−µ2t

2

]
dt

=

√
2

π

(
1√
u
− 1

)
+

√
2

π
µ−2e−µ2/2, u < 1,

which is integrable (in u) near zero. Therefore, we can apply the Dominated
Convergence Theorem in (5.4) and use the continuity of fj to deduce that
this equation also holds for ε = 0. Adding all the equations for j = 1, . . . , N ,
using that fj(0) = 1Ωj(x)Px(T

j > t) and fj(t) = Px(Bt ∈ Ωj, T > t), and
adding the contribution from Ω0, we obtain (5.3).

5.1. Proof of Theorem 1.2 for truncated cones. Theorem 5.1 is also valid
if we change the cone V = C(a,D, 0) for its truncated version C = C(a,D, 1),
but the limit turns out to be γV w(x), where w(·) is the unique positive
harmonic function in C that vanishes on ∂C, normalized at infinity, such
that limr→∞ r−κw(a+ rθ) = 1 for any θ ∈ D. Recall that S = a+D is the
base of C.

Indeed, notice that (t, x) 7→ Px(T
C > t) solves the heat equation in C.

By Harnack’s inequality, the family of functions h(t, x) = tκ/2Px(T
C > t),

indexed by t > 0, is bounded on compact sets of C. Since Px(T
C > t) ≤

Px(T
V > t), Lemma 2.3 applies and we conclude that any limit point has

the form µw(x). Of course, the constant µ may depend on the sequence (tk)
that makes h(tk, ·) converge. Nevertheless, we have µ ≤ γV by monotonicity
of domains, where γV is the same constant as in Theorem 5.1.

On the other hand, from Lemma 5.2, we have that for all x ∈ C

Px(T
V > t) = Px(T

C > t) + Px(|Bt| < 1, T V > t)+

+
1

2

∫ t

0

∫

S

∂nPz(T
C > t− s)pV (s, x, z)σ(dz)ds.
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Also, by Harnack’s inequality tκ/2Px(|Bt| < 1, T V > t) ≤ C1t
κ/2p(t +

1, x, x0), which converges to zero, as t → ∞ by Theorem 1.1. Thus,

γV v(x) ≤ µw(x) + lim
t→∞

tκ/2

2

∫ t

0

∫

Sj

∂nPz(T
C > t− s)pV (s, x, z)σ(dz)ds.

(5.5)

We will next show how to control the integral on the right hand side of (5.5).

By applying Fubini’s theorem to the Chapman-Kolmogorov equation for
the heat kernel, we get for t, s > 0,

Px(T
C > t+ s) =

∫

C

pC(s, x, z)Pz(T
C > t)dz.

Using the heat kernel of the exterior of a ball we get the upper bound
∂xp

C(s, x, z) ≤ Ae−B|z|2 for s > 1 and all x ∈ C. We can apply the Dominated
Convergence Theorem to get for x ∈ S

∂nPx(T
C > t+ s) =

∫

C

∂np
C(s, x, z)Pz(T

C > t)dz.(5.6)

Moreover, using (5.2), it is easy to obtain the following limit by using again
the Dominated Convergence Theorem

lim
k

t
κ/2
k ∂nPx(T

C > tk) = µ

∫

C

∂np
C(s, x, z)w(z)dz = µ∂nw(x).

The last equality holds because w is harmonic.

As usual, we split the integral from (5.5) into:

I1(t) =

∫ t/2

0

∫

S

∂nPz(T
C > t− s)pV (s, x, z)σ(dz)ds

≤ CH

∫

S

∂nPz(T
C > t/2)σ(dz)

∫ t/2

0
pV (s+ 1, x, ξ)ds.

This shows that limt→∞ tα/2I1(t) ≤ C1G
V (x, ξ), where C1 > 0 is universal.

Also, by the boundary Harnack inequality

I2(t) =

∫ t

t/2

∫

S

∂nPz(T
C > t− s)pV (s, x, z)σ(dz)ds

≤ CH

∫ t

t/2

∫

S

∂nPz(T
C > t− s)σ(dz)ds pV (t/2, x, x)

≤ Cxt
−1−α

∫ t/2

0

∫

S

∂nPz(T
C > s)σ(dz)ds
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where Cx only depends on x. Using bounds for the exit time for a Bessel
process from [1,∞) as in Lemma 5.2, we get that

∫ 1
0 ∂nPz(T

C > s)ds ≤ Q,
independently of z ∈ S. Then

tκ/2I2(t) ≤ Cxt
−1−α+κ/2

(
Q |S|+

(
t

2
− 1

)∫

S

∂nPz(T
C > 1)σ(dz)

)
.

It follows that tκ/2I2(t) → 0 as t → ∞. Equation (5.5) now reads

γV v(x) ≤ µw(x) + C1G
V (ξ, x), x ∈ C.

Since GV (ξ, x) remains bounded as x → ∞ radially in C, we deduce that
γV = µ, which proves the asymptotic for the survival probability.

5.2. Proof of Theorem 1.2. In formula (5.3), the first term is controlled
by our result from the previous section. The second term goes to zero by
using Harnack’s inequality up to the boundary, that is, for some x0 ∈ Ω0,

Px(Bt ∈ Ω0, T > t) =

∫

Ω0

p(t, x, z)dz ≤ CH |Ω0| p(t+ 1, x, x0),

where |Ω0| stands for the Lebesgue measure of the core Ω0. It follows that
tκ/2Px(Bt ∈ Ω0, T > t) converges to zero as t → ∞ for each x ∈ Ω.

Next, we deal with the summation terms. In order to do this, we will find
limits for the following two objects:

tκ/2I1(t) = tκ/2
∫ t/2

0

∫

Sj

∂nPz(T
j > t− s)p(s, x, z)σ(dz)ds,

tκ/2I2(t) = tκ/2
∫ t/2

0

∫

Sj

∂nPz(T
j > s)p(t− s, x, z)σ(dz)ds.

An analogous proof as the one in the last part of the previous section, shows
that tκ/2I2(t) converges to zero.

As for tκ/2I1(t), if 0 ≤ s ≤ t/2, our computations in the previous section
show that tκ/2∂nPz(T

j > t − s) converges to γj∂nwj(z) for z ∈ Sj and
j ∈ M, otherwise, it converges to zero. Here,

γj =
Γ
(
κ+n
2

)

2κ/2Γ
(
κ+ n

2

)
∫

Sj

m1
j(θ)σ(dθ).

To show domination, we use monotonicity of t 7→ ∂nPx(T
j > t), equation

(5.6), the bound ∂np
C(1, x, z) ≤ Ae−B|z|2 , and equation (5.2). We find that

tκ/2∂nPx(T
j > t− s) ≤ C3

∫

C

Ae−B|z|2 |z|κ dz < ∞.
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Thus, by the Dominated Convergence Theorem, we deduce that

lim
t→∞

tκ/2I1(t) = γj

∫ ∞

0

∫

Sj

∂nwj(z)p(s, x, z)σ(dz)ds

= γj

∫

Sj

∂nwj(z)G(x, z)σ(dz) = 2γj (uj(x)−wj(x)) ,

by Fubini’s theorem, and equation (1.3).

Putting all together, for x ∈ Ω,

lim
t→∞

tκ/2Px(T > t) =
∑

k∈M
γkuk(x),

which is (1.7).

6. Renormalized Yaglom limit for multicones. In what follows,
we set β = 1 + α + n/2. Notice that β/2 + κ/2 = 1 + α, which will be
conveniently used later.

From Theorem 2.6, it is straightforward to get that for x, y ∈ V =
C(0,D, 0)

lim
t→∞

tβ/2pV (t, x,
√
ty) =

v(x)v(y)

2αΓ(1 + α)
e−|y|2/2.(6.1)

The limit above holds uniformly in compact sets of V .

In order to extend this result to multicones, we start with the case of a
truncated cone C = C(0,D, 1).

Lemma 6.1. Let x, y ∈ C. Then,

lim
t→∞

tβ/2pC(t, x,
√
ty) =

w(x)v(y)

2αΓ(1 + α)
e−|y|2/2.(6.2)

Proof. As in the proof of Lemma 3.3, we have that t1+α∂np
C(t, x, ξ) ≤

Qx for all t > t0, ξ ∈ S. Thus, using the boundary Harnack inequality, there
exist Cx > 0 only dependent on x, such that

tβ/2

2

∫ t/2

0

∫

S

∂np
C(t− s, x, ξ)pV (s, ξ,

√
ty)dξds ≤ CxG

V (x,
√
ty)tβ/2−(1+α).

(6.3)
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For large t, the quantity GV (x,
√
ty) is bounded, and as β/2 − (1 + α) =

−κ/2 < 0, we deduce that

lim
t→∞

tβ/2

2

∫ t/2

0

∫

S

∂np
C(t− s, x, ξ)pV (s, x,

√
ty)dξds = 0.(6.4)

On the other hand, from Theorem 2.6, it is direct to find the bound

tβ/2pV (t, x,
√
ty) ≤ C

∞∑

i=1

(|x| |y|)αi−(n
2
−1)

2α
i
Γ(1 + αi)

< ∞,(6.5)

for t > 2 and some universal constant C > 0. It follows by (6.1) and the
Dominated Convergence Theorem that

lim
t→∞

tβ/2

2

∫ t/2

0

∫

S

∂np
C(s, x, ξ)pV (t− s, ξ,

√
ty)dξds =

=
v(y)e−|y|2/2

2αΓ(1 + α)

∫ ∞

0

∫

S

1

2
∂np

C(s, x, ξ)v(ξ)dξds

= e−|y|2/2 v(y)Ex(v(BTC))

2αΓ(1 + α)
(6.6)

Plugging the last two equations into (2.5), with O = V and U = C, we
obtain

lim
t→∞

tβ/2pC(t, x,
√
ty) = lim

t→∞
tβ/2pV (t, x,

√
ty)− e−|y|2/2 v(y)Ex(v(BTC))

2αΓ(1 + α)
,

from where (6.2) is direct to deduce by using (1.2).

Lemma 6.2. We have for each y ∈ V

sup
t>2

sup
ξ∈S

tβ/2∂np
C(t,

√
ty, ξ) < ∞(6.7)

Also, for y ∈ C and ξ ∈ S,

lim
t→∞

tβ/2∂np
C(t,

√
ty, ξ) =

∂nw(ξ)v(y)

2αΓ(1 + α)
e−|y|2/2.(6.8)

The limit holds in the sense of uniform convergence in compact sets.
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Proof. Recall that, from the bound for the heat kernel of the exterior
of a ball, and monotonicity of domains

tβ/2∂np
C(t+ 1,

√
ty, ξ) = tβ/2

∫

C

∂np
C(1, z, ξ)pC(t,

√
ty, z)dz(6.9)

≤ tβ/2
∫

C

Ae−B|z|2pV (t,
√
ty, z)dz(6.10)

≤ AC

∫

C

e−B|z|2
∞∑

i=1

(|z| |y|)αi−(n
2
−1)

2αiΓ(1 + αi)
(6.11)

where the last inequality follows from (6.5). From here, using bounds for the
moment of gaussian random variables, we arrive at the bound:

tβ/2∂np
C(t+ 1,

√
ty, ξ) ≤ C6

∞∑

i=1

C
αi+n/2
7 |y|αi−(n

2
−1)

2α
i/2Γ(1 + αi)

Γ

(
1 + αi

2
+

n

4

)
,

(6.12)

which is finite.

The same steps as above show that it is possible to apply the Dominated
Convergence Theorem in (6.9). Equation (6.8) then follows from Lemma
6.1.

6.1. Proof of Theorem 1.3.

Proof. As before, our starting point is equation (2.5). We will study the
rate of decay of the integral involved in such equation by splitting in two
terms, as before. First, let us study

tβ/2I1(t) = tβ/2
∫ t/2

0

∫

Sj

1

2
∂np

j(t− s, aj +
√
ty, ξ)p(s, x, ξ)dξds.(6.13)

Using Lemma (6.2), we see that we can apply the Dominated Convergence
Theorem to this integral to obtain

lim
t→∞

tβ/2I1(t) = 1M(j)

∫ ∞

0

∫

Sj

1

2

∂nwj(ξ)e
−|y|2/2vj(y)

2αΓ(1 + α)
p(s, x, ξ)dξds

= 1M(j)
e−|y|2/2vj(y)
2αΓ(1 + α)

∫

Sj

1

2
∂nwj(ξ)G(x, ξ)dξds

= 1M(j)
e−|y|2/2vj(y)
2αΓ(1 + α)

(uj(x)− wj(x)) .(6.14)
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Second, we look at

tβ/2I2(t) = tβ/2
∫ t/2

0

∫

Sj

1

2
∂np

j(s, aj +
√
ty, ξ)p(t− s, x, ξ)dξds

(6.15)

= t−κ/2

∫ t/2

0

∫

Sj

1

2
∂np

j(s, aj +
√
ty, ξ)t1+αp(t− s, x, ξ)dξds

From Theorem 1.1, we have that t1+αp(t − s, x, ξ) ≤ Cx for all s ∈ [0, t/2]
as long as t > 3. The constant Cx depends only on |x|. Then

tβI2(t) ≤ Cxt
−κ/2

∫ t/2

0

∫

Sj

1

2
∂np

j(s, aj +
√
ty, ξ)dξds

= Cxt
−κ/2

P√
ty(BT j ∈ Sj , T

j < t/2) ≤ Cxt
−κ/2,

which converges to zero.

Putting together equation (2.5), Lemma 6.1, and the last estimates, we
obtain

lim
t→∞

tβ/2p(t, x, aj +
√
ty) = 1M(j)

uj(x)vj(y)

2αΓ(1 + α)
e−|y|2/2,(6.16)

as desired.

6.2. Distributional convergence of the renormalized process. Theorem 1.3
suggests that, when conditioned on survival, most of the trajectories of Brow-
nian motion at time t stay within order

√
t from the origin. Thus, it is nat-

ural to study the convergence of the rescaled process Bt/
√
t conditioned on

survival.

Let A ⊆ Vj be a precompact, Borel set. Notice that β − κ = n. Then, by
a simple change of variable

Px

(
(Bt − aj)/

√
t ∈ A|T > t

)
=

∫
√
tA

p(t, x, aj + z)

Px(T > t)
dz

=

∫

A

p(t, x, aj +
√
ty)

Px(T > t)
tn/2dy

=

∫

A

tβ/2p(t, x, aj +
√
ty)

tκ/2Px(T > t)
dy,
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By Theorems 1.2 and 1.3, the integrand on the right hand side converges to
the function

px(j, y) =
vj(y)e

−|y|2/2

γj2αΓ(1 + α)
· γjuj(x)∑

k∈M γkuk(x)
1Vj (y).(6.17)

Equation (6.17) defines a probability distribution function on M × ∪j∈MVj

for a family of random variables Xx = (Xx
1 ,X

x
2 ), with x ∈ Ω, which is

simple to interpret. Fix x ∈ Ω and let Xx
1 be a discrete random variable

with distribution given by

P(Xx
1 = j) =

γjuj(x)∑
k∈M γkuk(x)

, j ∈ M.(6.18)

This is a sample of one of the maximal branches of the multicone. As t → ∞
the multicone Ωj is rescaled into the cone with vertex Vj. Correspondingly,
we define Xx

2 as a continuous random variable on ∪j∈MVj satisfying

P(Xx
2 ∈ dy|Xx

1 = j) =
vj(y)e

−|y|2/2

γj2αΓ(1 + α)
1Vj(y).(6.19)

Our computation at the beginning of the section, and the uniform con-
vergence on compact sets shows that, under Px, the renormalized process
Bt/

√
t conditioned on survival converges weakly to Xx.
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